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Abstract
Exome sequencing (ES) has become the method of choice for diagnosing rare diseases, while the availability of short-read 
genome sequencing (SR-GS) in a medical setting is increasing. In addition, new sequencing technologies, such as long-read 
genome sequencing (LR-GS) and transcriptome sequencing, are being increasingly used. However, the contribution of these 
techniques compared to widely used ES is not well established, particularly in regards to the analysis of non-coding regions. 
In a pilot study of fve probands afected by an undiagnosed neurodevelopmental disorder, we performed trio-based short-
read GS and long-read GS as well as case-only peripheral blood transcriptome sequencing. We identifed three new genetic 
diagnoses, none of which afected the coding regions. More specifcally, LR-GS identifed a balanced inversion in NSD1, 
highlighting a rare mechanism of Sotos syndrome. SR-GS identifed a homozygous deep intronic variant of KLHL7 resulting 
in a neoexon inclusion, and a de novo mosaic intronic 22-bp deletion in KMT2D, leading to the diagnosis of Perching and 
Kabuki syndromes, respectively. All three variants had a signifcant efect on the transcriptome, which showed decreased gene 
expression, mono-allelic expression and splicing defects, respectively, further validating the efect of these variants. Overall, 
in undiagnosed patients, the combination of short and long read GS allowed the detection of cryptic variations not or barely 
detectable by ES, making it a highly sensitive method at the cost of more complex bioinformatics approaches. Transcriptome 
sequencing is a valuable complement for the functional validation of variations, particularly in the non-coding genome.

Introduction

High-throughput sequencing has signifcantly advanced our 
understanding of the molecular basis of genetic diseases. In 
particular, trio exome sequencing (ES) has provided insight 
into the impact of de novo mutations on the coding sequence 
of the genome (Deciphering Developmental Disorders Study 
2017; Kaplanis et al. 2020). The usefulness of ES for gene 
discovery and clinical applications is now well established.

Genome sequencing (GS) has also been used for inves-
tigating rare diseases for around a decade (Gilissen et al. 
2014) but its use in routine diagnosis is more recent. The 
cost of GS, the more complex informatics procedures 
compared to ES, and the unclear added value in terms of 
diagnostic yield have slowed the adoption of GS in diag-
nostic routine compared to ES. However, sequencing pro-
cedures and data analysis have improved, making GS more 
viable in healthcare systems. As a result, several countries 
have developed public health strategies around GS, with 
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signifcant investments (Lévy 2016; Kovanda et al. 2021; 
100,000 Genomes Project Pilot Investigators et al. 2021). 
Recommendations for the diagnostic use of GS have been 
established, both long-standing (van El et al. 2013) and 
recent (Souche et al. 2022), including guidance on the 
interpretation of non-coding variations (Ellingford et al. 
2022). However, the contribution of non-coding regions to 
rare diseases and the benefts of genome sequencing com-
pared to ES as a diagnostic tool are not well understood. 
While certain short-read protocols, such as the large-insert 
GS method, have been developed to mitigate the limita-
tions of small molecule sequencing with respect to the 
detection sensitivity of structural variations (Dong et al. 
2019), long-read GS approaches are increasingly used in 
patients with rare diseases.

Long-read genome sequencing (LR-GS) provides access 
to certain types of variation that are difcult to capture in 
short-read genome sequencing (SR-GS), such as variations 
in complex regions, short tandem repeats (STRs) and other 
repeats, balanced structural variations, and mobile elements 
of the genome (Mantere et al. 2019). LR-GS has been used 
at the scale of small populations (Beyter et al. 2021; Wu 
et al. 2021) and is expected to be a key part of the future of 
genomics (De Coster et al. 2021), although its use for the 
diagnosis of rare diseases has been limited to a small num-
ber of patients (Pauper et al. 2021; Hiatt et al. 2021). The 
two main long molecule sequencing techniques currently 
available (Eid et al. 2009; Clarke et al. 2009) historically 
had a high error rate per base, including many insertions 
and deletions. However, they still allowed accurate detec-
tion of structural variations. Recently, substantial optimiza-
tions of these protocols have enabled obtaining high-quality 
data on  short variants as well (Wenger et al. 2019). Since 
these optimizations were not available for this study, we used 
SR-GS and LR-GS in a complementary way to detect a wide 
range of variations of all types.

The use of RNA sequencing (RNA-seq) in the form of 
bulk transcriptome analysis on whole blood or other acces-
sible biological samples is emerging as a versatile tool for 
the diagnosis of rare diseases, through its global analysis 
of transcripts. Transcriptome sequencing allows the detec-
tion of quantitative and qualitative abnormalities in gene 
expression resulting from genetic variations. Specifcally, the 
search for decreased expression, monoallelic expression, or 
splicing defects in the form of abnormal retention or exclu-
sion of portions of transcripts can serve as biomarkers of 
the biological efect of candidate variations. Although it is 
possible to detect variations in RNA-seq data, the sensitivity 
of detection is low and this technique is often used in com-
bination with more robust genomic DNA sequencing (such 
as ES or GS). These combined approaches have been shown 
to have higher diagnostic yield than genomic DNA sequenc-
ing alone (Lee et al. 2020; Colin et al. 2022; Coursimault 

et al. 2022), particularly through the functional validation 
of candidate variants.

The objective of this pilot study was to evaluate the con-
tribution of these innovative techniques in identifying patho-
genic variants. We present the results of trio short-read and 
long-read genome sequencing, along with case-only tran-
scriptome sequencing, in a series of fve patients with unex-
plained developmental abnormalities after exome analysis.

Materials and methods

Patients and samples

Inclusion criteria were: (i) patient with a developmental 
disorder of suspected genetic origin, (ii) no known genetic 
cause following genetic investigation including at least 
exome sequencing, and (iii) agreement of the parents to 
participate. Patients were selected among those followed in 
the clinical genetics consultation of the Rouen University 
hospital, until n = 5 trios were included.

Each patient received genetic analysis according to clini-
cal orientation and diagnostic strategies, and had under-
gone ES that was considered negative prior to this study. 
Informed written consent was obtained from both parents 
of each proband for genetic analysis in a medical setting 
and participation to the study. The study was approved by 
the CPP Ouest V (20/043-2) ethics committee. Biological 
material for SR-GS, LR-GS, and RNA-seq analyses was 
obtained from EDTA and Paxgene blood samples. Figure 1 
summarizes the sampling, preparation methods, sequencing, 
and data analysis.

SNV/indel detection by trio short‑read genome 
sequencing

DNA was extracted from whole blood using standard pro-
cedures. SR-GS was performed in the Centre National 
de Recherche en Génomique Humaine (CNRGH, Institut 
de Biologie François Jacob, CEA, Evry, France). After 
quality control, genomic DNA (1 µg) was used to prepare 
libraries for whole genome sequencing using the Illumina 
TruSeq DNA PCR-Free Library Preparation Kit (Illumina 
Inc., CA, USA) according to the manufacturer's instruc-
tions. After quality control and normalization, qualifed 
libraries were sequenced on a NovaSeq6000 platform 
from Illumina (Illumina Inc., CA, USA) as paired-end 
150 bp reads. Samples were pooled on a NovaSeq6000 S4 
fowcell to reach an average sequencing depth of > 30×. 
Sequence quality parameters were assessed throughout the 
sequencing run and standard bioinformatics analysis of 
the sequencing data was based on the Illumina pipeline 
to generate fastq fles for each sample. Read alignment 
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to the reference genome GRCh38 was performed using 
BWA, and SNV/indel calling was performed on each 
alignment fle using Deepvariant (Poplin et  al. 2018). 
Individual gVCFs were merged using GLnexus. Stand-
ard gene and variant-based annotations were added using 
custom scripts. De novo variants were called using an in-
house pipeline as previously described (Coursimault et al. 
2022), consisting of (i) the detection of de novo candidates 
through a series of flters applied by bcftools on the multi-
vcf, and (ii) manual review of the de novo candidates on 
IGV using a dedicated python script (see web resources). 
Complementary variant types were also called on SR 
genomes, including the analysis of disease-associated 
STRs using ExpansionHunter, the detection of uniparen-
tal disomies using a custom script (UPD_plotter, see web 
resources), and the detection of regions of homozygosity 
using AutoMap (Quinodoz et al. 2021).

SV detection by long‑read genome sequencing

DNA of high molecular weight were extracted from 
PBMCs using Revolugen kit for trios A–D, and from 
frozen blood using Circulomics kit for trio E. DNA was 
quantifed and fragmented to a target size of 20 kb. Sam-
ples were prepared using SQK-LSK109 or SQK-LSK110 
ligation kits and sequenced on a Promethion instrument 
(Oxford Nanopore Technologies, ONT). QC was per-
formed on raw data by nanoplot and reads were aligned 
on GRCh38 by minimap2. Calling of structural variants 
(DEL, INS, DUP, INV, BND) was performed on individual 
alignment fles and merged into a single multi-vcf by Snif-
fes2 with standard parameters. Variants were annotated by 
annotSV and fltered via BCFtools. Variants were ranked 
according to patients phenotype and variant efect using 
SvAnna (Danis et al. 2022).

Fig. 1   Sequencing methods and strategies. The main methods are 
presented, but other complementary bioinformatics approaches 
were  performed, including for SR-GS the detection of uniparen-

tal disomies, the genotyping of STRs involved in pathology, and the 
detection of regions of homozygosity (see “Materials and methods”)
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Transcriptome sequencing

RNA was extracted from Paxgene blood samples following 
the manufacturer’s protocol. Reverse transcription was per-
formed using the random primers based SureSelect cDNA 
Module (Agilent Technologies). Agilent Magnis was used 
to capture coding exons with the SureSelect all exon V7 
probes. Sequencing was performed on Illumina Nextseq 
500 in the Rouen sequencing facility. Eight samples were 
pooled and sequenced using High Output Kit v2.5 (150 
Cycles, 400 M reads). Data was processed using nf-core 
rnaseq pipeline (see web resources), including read align-
ment on GRCh38 by STAR, quantifcation by Salmon, and 
aberrant junction analysis by RSeQC. Analysis of aberrant 
splicing and mono-allelic expression at specifc loci of inter-
est were performed using IGV. For quantitative analysis, we 
compared the adjusted gene expression using the transcripts 
per million (TPM) metrics between the fve probands plus 
three additional samples from the same sequencing batch 
belonging to patients with developmental disorders and a 
variant of unknown signifcance in unrelated genes.

Variant fltration

Variant fltration and analysis was performed following the 
major inheritance modes in developmental disorders, i.e. (i) 
de novo, (ii) recessive, either homozygous or compound het-
erozygous, and (iii) X-linked. Standardized variant interpre-
tation guidelines were applied (Richards et al. 2015). Global 
methodology for variant detection and analysis are depicted 
on Fig. 1.

Results

We included fve probands (three males, two females, age at 
inclusion ranged from 2.7 to 13.4 years) and their unafected 
parents. All probands presented with a neurodevelopmental 
disorder of unknown cause following clinical and molecu-
lar evaluations and follow-up by clinicians specializing in 
rare developmental disorders. A sporadic presentation was 
noted in four families, while in family B, the proband had 
a younger brother with similar symptoms in a context of 
consanguinity, highly suggestive of an autosomal recessive 
disorder.

Sequencing quality and variant calling

Sequencing metrics of the 15 samples are summarized in 
Fig. 2. SR-GS produced about 500 million reads per individ-
ual, leading to a median depth of 43 × after read alignment 
and deduplication. SNV/indels variant counts were highly 
homogeneous between individuals, with a median of 4.7 

million SNV/indels per sample after calling from SR data 
using Deepvariant, including 1.200 rare (frequency < 1% in 
gnomAD v2.1) variants with a high, moderate or low efect 
as annotated by VEP (Supplementary Fig. 1). Probands har-
bored from 49 to 111 de novo SNVs and from 7 to 11 de 
novo indels with high confdence (Supplementary Fig. 2), 
with a paternal age correlation consistent with current 
knowledge.

LR-GS achieved similar average depth of coverage of 
40×. Read length N50 was about 14.9 kb, meaning that 50% 
of bases sequenced were within reads of this size or more. 
Structural variants were detected from LR alignments by 
the Snifes2 algorithm. Similar to SNV/indels, SV count 
was highly homogeneous between the 15 individuals with an 
average of 26,191 (range 25,770–27,479) SV calls (deletion, 
duplication, insertion, inversion and break-ends). Supple-
mentary Fig. 3 summarizes the counts and sizes of SV calls 
among the 15 individuals. Mendelian transmission, evalu-
ated by the mendelian bcftools plugin was concordant for 
92% of variants detected in probands, ranging from 81% for 
break-ends to 95% for duplications. Deletions and insertions 
represented 53% and 47% of all calls respectively, while the 
other SV types jointly accounted for less than 1% of events. 
SV count was inversely correlated with their size for all vari-
ant types. Two peaks at ~ 300 and ~ 7.000 bp were observed 
in the insertion and deletion events, recapitulating previous 
observations of Alu and Line mediated SVs, respectively 
(De Coster et al. 2019; Pauper et al. 2021; Beyter et al. 2021; 
Wu et al. 2021).

Identifcation of a likely pathogenic or pathogenic 
variant in 3/5 patients

Prioritization of rare variants as detected by SR (SNV/
indels) and LR (SV) GS following Mendelian hypotheses 
(de novo mutation, autosomal recessive, X-linked inherit-
ance) allowed us to identify a (likely) pathogenic variant 
in 2/5 patients (Patient C and Patient E) and a candidate 
homozygous deep intronic variant in one patient (Patient 
B). Transcriptome sequencing data provided extra evidence 
for pathogenicity in all three patients thus leading to a fnal 
diagnosis in 3/5 patients.

Identifcation of a homozygous deep intronic variant 
in KLHL7

An autosomal recessive disorder was highly suspected in 
proband B based on familial information. Her unafected 
parents were frst cousins and her younger brother pre-
sented with the same specifc phenotype including intra-
uterine growth retardation (IUGR), microcephaly, facial 
dysmorphic features, and intellectual disability (Fig. 3A, 
supplementary information). Inspection of homozygous 
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regions using the Automap software was consistent with 
the level of consanguinity. Analysis of homozygous vari-
ants revealed a variant initially considered as a variant 
of uncertain significance in the KLHL7 gene, located 
within a large homozygous region on chr7 (Fig.  3B): 
NM_001031710.3:c.619-349A > G, p.?. This variant 
retained our attention because bi-allelic loss-of-function 
variants in KLHL7 are involved in Perching Syndrome 
(OMIM #617055), an autosomal recessive syndromic 
developmental disorder (Angius et al. 2016; Bruel et al. 
2017; Jefries et al. 2019) with a strong clinical overlap 
with the trio B siblings. In addition, this candidate intronic 
variant was predicted by SpliceAI to result in a gain of a 
donor site (delta score = 0.78), while a combined use of a 

predicted acceptor site (delta score = 0.74) would result in 
the inclusion of a hypothetical 95-bp neo-exon (Fig. 3C). 
Variant segregation analysis in the affected younger 
brother showed that he was also homozygous for this 
variant. Transcriptome analysis from a blood sample of 
the proband confrmed the presence of the suspected out-
of-frame neo-exon (Fig. 3D) and quantitative analysis of 
TPM using the Salmon software showed reduced KLHL7 
expression, likely due to nonsense-mediated decay on both 
alleles (Fig. 3E). Altogether, we identifed a deep intronic 
variant with a signifcant deleterious efect on splicing in 
the KLHL7 gene, with concordant clinical and segregation 
arguments. These fndings allowed us to fnally classify 
this variant as likely pathogenic and to solve this familial 
case.

Fig. 2   Quality metrics and variant counts. Each point represents one 
sample (n = 15 for SR and LR-GS, n = 5 for transcriptomes). The 
individual values of each metrics is available in Supplementary Mate-
rial. A Short-read Illumina genomes: number of reads sequenced 
(bash script from R1 FASTQs), median depth on GRCh38 (Mos-
depth), number of SNVs and Indels (DeepVariant calling report). 
B Long-read ONT genomes: read size assessed by N50 read size 

(50% of sequenced bases are in reads longer than this measure), and 
by the length of the longest read in the library (source: Nanoplot). 
Median depth on GRCh38 evaluated by Mosdepth. Variant calling 
by Snifes2. C Transcriptomes on whole blood samples: read count 
(FASTQC), genes detected, as evaluated by a depth of coverage 
of > 5X (StingTie) and count of known junctions detected (RSeQC)
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Identifcation of a complex balanced structural variant 
in NSD1

Proband E was a 7-year-old patient of Caucasian descent. 
She presented with a sporadic developmental disorder 
including statural advance with macrocephaly, scoliosis, 
pectus excavatum, arachnodactyly, facial dysmorphic fea-
tures, and delayed motor and language acquisitions (Fig. 4A, 
supplementary information). A disorder in the spectrum of 
Sotos syndrome was the main hypothesis, but neither panel 
analysis nor ES analysis of the proband led to a molecular 
diagnosis. Snifes2, the structural variant caller used on 
LR-GS data, identifed two de novo inversion events on chr5 
(Fig. 4B) that were further inspected on short-read and long-
read alignments (Fig. 4C). These two events recapitulated a 
complex and mostly balanced structural variant consisting 
of a 3.5 Mb inversion, fanked by two deletions of ~ 5 kb 
at each side: NC_000005.10:g.[173693667_173699649del
;173699650_177157517inv;177157518_177162599del]. 
A UCSC session showing the event is available in web 
resources. While the proximal breakpoint was intergenic, 
the distal breakpoint was located within intron 2 of NSD1 
(NM_022455.5), the gene responsible for Sotos syndrome. 

LR-GS allowed us to phase this variant to the paternal hap-
lotype (data not shown). The disruption of NSD1 coding 
sequence and the separation of most of the transcript from 
its promoter led us to hypothesize the presence of monoal-
lelic expression of the maternal allele. Consistent with this 
hypothesis, the exonic rs1363405 SNP, heterozygous in 
proband E and her father, was not detected in the transcrip-
tome, indicating a total absence of expression of the paternal 
allele in proband E (Fig. 4D). Furthermore, relative expres-
sion compared to controls showed a decreased expression 
of NSD1 of ~ 50% (Fig. 4E). The clinical hypothesis, the de 
novo nature of this variant, and the clear consequence on 
transcription led us to classify this variant as pathogenic.

Identifcation of a splicing pathogenic variant in KMT2D

Proband C was a non-consanguineous 15-year-old patient 
afected by a sporadic neurodevelopmental disorder. He 
presented with intellectual disability associated with sco-
liosis, congenital heart defect and facial dysmorphic fea-
tures (Fig. 5A, supplementary information). This association 
was evocative of Kabuki syndrome (KS), but neither a gene 
panel nor an exome approach identifed a molecular cause. 

Fig. 3   Short read genome sequencing identifes a homozygous 
deep intronic variant in KLHL7 leading to a neo-exon. The variant 
NM_001031710.3:c.619-349A > G, p.? was identifed at a homozy-
gous state in proband B and her younger brother. A Clinical data. 
Photograph represent proband A at 10 years of age, and her younger 
brother at 7 years of age, showing hypotonia of the mouth and expres-
sionless face in both siblings. B Regions of homozygosity in proband 
B’s genome, as detected by the Automap software (Quinodoz et  al. 
2021). Note the presence of the gene KLHL7 in the largest homozy-
gous region on chr7. C SpliceAI predictions of splicing in wild-type 
(upper) and mutant (lower) panels. The reference base is highlighted 

in green and the alternative base is in red. Note the prediction of 
both a donor splice site in blue and an acceptor site in brown, fram-
ing a 95-bp pseudo exon at the genomic position NC000007.1
4:g.23,143,406–23,143,500, depicted as a dashed line. Plot generated 
using SpliceAI Visual (de Sainte Agathe et al. 2023) on the Mobide-
tails platform (Baux et al. 2021). D Transcriptome data on Paxgene 
blood sample confrming the intronic retention of a 95-bp neoexon in 
proband B and not in batch controls. IGV sashimi plot, GRCh38. E 
Quantitative TPM analysis shows a lowed KLHL7 expression com-
pared to batch controls. IUGR​ intra-uterine growth retardation



Human Genetics	

1 3

Analysis of de novo SNV and indels in trio-based SR-GS 
showed a 22pb deletion in intron 39 of KMT2D, one of the 
two genes associated with KS: NM_003482.4:c.10741-
23_10741-2del, NC_000012.12:g.49033967_49033988
del (Fig. 5B). Variant allelic fraction was 20%, suggesting 
a post-zygotic event. Proband C was heterozygous for an 
exonic SNP, rs3782357, which was located at close proxim-
ity of the deletion. This variant, inherited from the father, 
could be used for variant phasing directly in SR-GS data. 
Only about half of the reads spanning the heterozygous 
SNP harbored the de novo splicing variant, which validated 
a post-zygotic mosaicism on the paternal allele (data not 
shown). This variant was located directly adjacent to the 
canonical 3′ splice site of intron 39 of KMT2D and was pre-
dicted to result in a loss of this splice site by in-silico algo-
rithms including SpliceAI. This efect was assessed using 

transcriptome sequencing, which showed partial intron 
retention, which was consistent both with the mosaic dis-
tribution of the variant and putative partial degradation by 
NMD (Fig. 5C). Based on its de novo transmission, loss-of-
function consequence, and high clinical concordance with 
KS in this patient, this variant was classifed as pathogenic. 
While this variant could have been seen on previous exome 
and panel analysis, it is likely that the mosaicism is involved 
in this missed diagnosis.

Discussion

We performed short-read and long-read genome sequencing, 
as well as peripheral blood transcriptome analysis, in a series 
of fve patients without genetic diagnosis after extensive 

Fig. 4   Long read genome sequencing identifes a de novo inver-
sion on chr5 leading to NSD1 haploinsufciency with mono-allelic 
expression. A Clinical summary of proband E. B UCSC visualiza-
tion the de novo event detected by Snifes 2. The SV was detected as 
two distinct but close 3.5 Mb inversions. Snifes2 called two events 
because of 5979  bp and 5082  bp deletions at breakpoints (depicted 
in red). Note the presence of an OMIM morbid gene on the second 
breakpoint, namely NSD1. Upper panel: global view of the event. 
Lower panel: zoomed view on the breakpoint within one intron of 
NSD1. C IGV visualization of long read and short read alignments. 
Two genomic windows focusing on breakpoints are presented. Note 
the de novo nature of this complex SV. The two ~ 5 Kb heterozygous 

deletions are visible in short and long read alignments. Short read 
representation using «  color by pair orientation» confrms that the 
3.5 Mb fragment between the two deletions is inverted. D Transcrip-
tomic consequences: monoallelic expression. The paternal exonic 
rs1363405 SNP, located in the coding sequence of NSD1 (exon 
5, NM_022455.5), and present at a heterozygous state in proband 
B’s genome was used as a marker to distinguish both alleles. Tran-
scriptome did not show any read supporting the alternate allele of 
rs1363405, indicating a strict monoallelic expression of proband B’s 
maternal allele. E Transcriptomic consequences: accordingly, quan-
titative TPM analysis shows a lower NSD1 expression compared to 
batch controls
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investigations including exome sequencing. These combined 
approaches allowed us to identify the cause of the disease 
in three families. Of note, it is not possible to infer from 
this study the performance of these approaches on larger 
cohorts of developmental diseases with negative exome 
analysis. Indeed, this study, based on only fve families, is 
underpowered to accurately assess the precise contribution 
of these techniques. Furthermore, the particularly selected 

clinical context of these fve patients may have introduced 
a bias, resulting in a higher yield than analyses performed 
on a larger scale. Nevertheless, this study provides insights 
into potential diagnostic opportunities beyond the current 
standard approaches.

The main input from long-read genome sequencing (LR-
GS) was the identifcation of a complex, mostly balanced de 
novo structural variant disrupting the NSD1 gene. Inspection 

Fig. 5   De novo variant analysis 
identifes a mosaic splicing 
variant in KMT2D. A Clini-
cal data. Photograph represent 
proband C at 10 years of age. 
Note the fat face, abnormal 
eyebrows, ptosis, long and 
everted palpebral fssures, long 
philtrum and dysplastic ear 
lobes. B Short read alignments 
show a de novo 22 bp dele-
tion: NM_003482.4:c.10741-
23_10741-2del, with an allelic 
ratio evocative of mosaicism. 
The paternally inherited SNP 
rs3782357 appears on the same 
reads as the de novo indel 
indicating that the de novo event 
occurred on the paternal haplo-
type. Blue bars refer to C, green 
refer to A, red refer to T and 
orange refer to G. C Transcrip-
tomic consequences: presence 
of intronic reads compared to 
controls indicating a partial 
retention on intron 39



Human Genetics	

1 3

of the short-read alignments and retrospective analysis of 
structural variants on short-read data using SR-specifc call-
ers (Manta and Canvas) confrmed the presence of this com-
plex variant. While it could have been detected using short-
read data alone, calling and interpreting structural variants 
on SR-GS can be challenging due to numerous artifacts. In 
contrast, data obtained from LR-GS had fewer artifacts and 
was more readily accessible. The SvAnna software, which 
ranks variants detected in LR-GS according to the patient's 
phenotype and the efect of variants on genes, was released 
during the writing of this manuscript, after the identifca-
tion of the complex inversion in the proband (E), and was 
retrospectively tested. With minimal phenotypic information 
(2 HPO terms) and no information on parental transmis-
sion (i.e., de novo), SvAnna ranked the two detected inver-
sions as the top events from the approximately 26,000 events 
detected in proband E, indicating good performance without 
the need for fne adjustment. However, using SvAnna in both 
negative patients did not help prioritizing candidate vari-
ants that would have been missed by our analysis strategy. 
Additionally, the recent version 2 of Snifes features the 
ability to merge individual variant calls into a single multi-
VCF fle, simplifying the analysis of cohorts or families. 
Overall, new and powerful tools are emerging to facilitate 
the analysis of structural variants detected in LR-GS. While 
the chr5 inversion could have been detected using SR-GS, 
other variant types, such as mobile element insertions, can 
be particularly challenging to detect in SR data. These inser-
tions appear to be a recurrent source of novel diagnoses in 
rare disease cases (Hiatt et al. 2021; Walsh et al. 2021). It 
is likely that future long-read studies on larger cohorts will 
provide a better understanding of the contribution of LR-GS. 
Additionally, bioinformatics methods are likely to improve 
and approach the accessibility and robustness of short-read 
methods.

Genome sequencing ofers the access to virtually all non-
coding regions. However, we are still facing signifcant limi-
tations in non-coding variant interpretation. One increas-
ingly accessible source of pathogenic non-coding regions 
is the creation of neo-exons by deep intronic variants. A 
recent study showed that out of fve unsolved Cornelia de 
Lange cases, two were caused by an NIPBL de novo variant 
leading to a frameshift neo-exon (Coursimault et al. 2022). 
However, the global contribution of deep intronic variants 
leading to deleterious neo-exons in developmental disorders 
is unknown and could be the subject of future investiga-
tions. In this study, we identifed a homozygous KLHL7 vari-
ant leading to an out-of-frame neo-exon, which decreased 
gene expression in two siblings with features of Perching 
syndrome.

Finally, the third variant detected was a post-zygotic 
KMT2D variant afecting the paternal allele. The identif-
cation of a mosaic variant using GS after negative results 

from exome and panel sequencing may seem paradoxical, 
but the high homogeneity of coverage in SR-GS makes 
it a useful tool for detecting mosaics with relatively high 
allelic ratios (which have the potential to cause a clinical 
phenotype). Additionally, bioinformatics pipelines have 
improved in recent years, allowing for very robust detection 
of SNV-indels, particularly using the DeepVariant algorithm 
(Poplin et al. 2018), putatively contributing to explain this 
novel diagnosis missed by exome and gene panel sequencing 
although theoretically detectable.

Interestingly, among the three new diagnoses made, all 
had visible consequences on the blood-derived transcrip-
tome, which allowed us to validate these diagnoses. This 
was particularly important in the diagnosis of KLHL7. The 
peripheral blood transcriptome appears to provide independ-
ent evidence of pathogenicity, making it a good biomarker 
in certain situations, particularly for the assessment of vari-
ants in non-coding regions. It is a universal functional test 
with the obvious limitations of the expression of the gene of 
interest and the tissue evaluated. Of note, RNAseq data can 
also be used primarily to identify candidate variants. Here, 
we interpreted DNA sequencing data frst, mainly because 
the strategies available to interpret variants from RNAseq 
data require more comprehensive bioinformatics pipelines 
including comparison with a large number of samples, which 
was not available to us (Yépez et al. 2022).

For two patients with strongly suspected developmental 
disease, our multimodal analysis of SNV/indels, SVs, and 
other types of disease-associated variations (i.e., UPD and 
STR expansions) failed in identifying a diagnosis. It should 
be noted that one of these two patients had a Cornelia de 
Lange-like syndrome. This syndrome is associated with a 
strikingly high rate of tissue-specifc mosaicism, often with 
no detectability of the variation in blood and low mosaicism 
in other tissues, such as saliva (Latorre-Pellicer et al. 2021). 
A mosaic in saliva was previously excluded in this patient by 
a deep coverage gene panel analysis, but our understanding 
of this type of mosaicism is still incomplete and it is pos-
sible that an even more confned mosaicism is responsible 
for the symptoms. In complement to our analysis, we used 
the Phenomizer tool (Köhler et al. 2009) to help us to rank 
known Mendelian disorders by confronting Human Pheno-
type Ontology (HPO) codes associated to each patient’s phe-
notype. This phenotype-frst approach indeed identifed Cor-
nelia de Lange syndrome as a candidate disorder for Proband 
A, along with others. We then got back to the sequencing 
data and did not identify any candidate variant among the 
list of disorders with lowest p-values (< 0.05) following 
prioritization based on HPO information (Supplementary 
Table 1). In addition to variants not present in our data, it is 
also possible that our data does contain the diagnosis, but 
our analysis failed to identify it. For these cases, it is likely 
that new diagnoses will emerge in the coming years with the 
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evolution of bioinformatics procedures, as well as scientifc 
knowledge (loci and genes not implicated, and new types of 
variants). Finally, technological advances are also emerg-
ing, such as the outstanding new sequencing protocol called 
Circular Consensus Sequencing (Wenger et al. 2019) with 
long molecules and a very low error rate per base, resulting 
in a "near perfect genome" (Olson et al. 2022). This tech-
nique has the ability to detect virtually all types of variants 
in a single experiment (Hiatt et al. 2021) and will hopefully 
both simplify genomic testing and increase diagnosis rates.

In summary, a thorough, multi-technique analysis of 
patients with rare diseases that remained unsolved after 
exome sequencing resulted in a diagnostic yield of 3/5. It is 
likely that in the future, with the democratization and auto-
mation of these techniques, the vast majority of patients 
with a suspected rare genetic disease will have access to a 
molecular diagnosis.

Web resources

•	 Custom IGV-based fltration interface:
•	 https://​github.​com/​franc​ois-​lecoq​uierre/​genom​ic_​short​

cuts/
•	 Custom tool to detect Uniparental Disomies: UPD_plot-

ter
•	 https://​github.​com/​franc​ois-​lecoq​uierre/​UPD_​plott​er/
•	 Nf-core rnaseq pipeline:
•	 https://​nf-​co.​re/​rnaseq
•	 UCSC session showing NSD1 complex inversion:
•	 http://​genome-​euro.​ucsc.​edu/s/​franc​ois.​leco/​RRMUT_​

NSD1_​trioE

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00439-​023-​02553-1.
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