

Salmonella typing directly from stool using@MetaRudder
@LangridgeLab@LangridgeLab

ICASE partner

Steven Rudder^{1*}, Bilal Djeghout¹, Georgios Patsos², Ngozi Elumogo^{1,3}, Nicol Janecko¹, and Gemma C. Langridge¹

¹Quadram Institute Bioscience, Norwich, UK, ²RevoluGen, Hadfield, Glossop, UK, ³Eastern Pathogen Alliance, Norwich, UK

The aim of this work was to test the bacterial typing and AMR gene identification capability of our HMW-DNA extraction pipeline in combination with long read sequencing

Background

- Culture-based methods are laborious with inherent biases towards specific species or subtypes and often generate results after an outbreak has become established [1]
- Although routine sequencing is conducted for salmonellosis cases, for other enteric pathogens rapid culture-independent testing (CIT) is the predominant choice for diagnostic laboratories, yielding no isolates for sequencing [2]
- As laboratories continue to adopt CIT-only testing strategies, a gap in pathogen genomic epidemiology is created.
- One potential solution is sequence-based metagenomic approaches to identify bacterial pathogens during an outbreak [3]
- To aid sequence-based long read metagenomic approaches improved high molecular weight (HMW) DNA extraction processes are needed

Methods

• A HMW DNA extraction method for stool is in development using RevoluGen's automated Fire

Monkey HMW DNA extraction kit in multi-well filter plate format

- We have achieved recovery of DNA from clinical stools samples with an average length of 19kb which includes fragments of DNA >150kb (Fig. 1)
- 200ng of DNA was run on a Nanopore MinION sequencer using the LSK-109 library preparation kit

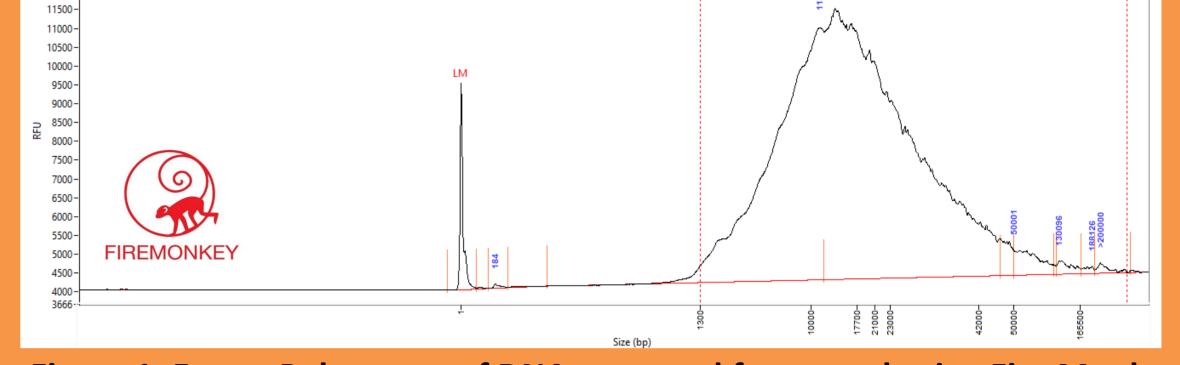


Figure 1: Femto Pulse trace of DNA extracted from stool using Fire Monkey

Results: Metagenome classification and Salmonella identification

- After base calling and QC, the yield was 884,500 reads with an N50 of 9,273bp (longest read was 154,201bp)
- Flye was used on meta mode to assemble contigs, N50 of contigs was 145,133bp (Table 1)
- Kraken2 was run on Flye assembled contigs and the data was visualised using Krona (Fig. 2)
- 2.14% of the overall sequence data was predicted to be Salmonella enterica, with 0.05% of the sequence data predicted to be Salmonella enterica subsp. salamae
- In addition to the identification of Salmonella enterica subsp. salamae a snapshot of the patients microbiome was captured. A large proportion of the data (71%) had no hits when using Kraken2. Faecalibacterium prausnitzii was identified as the most abundant bacterial species in the sample (present at 5.16% of overall sequencing)

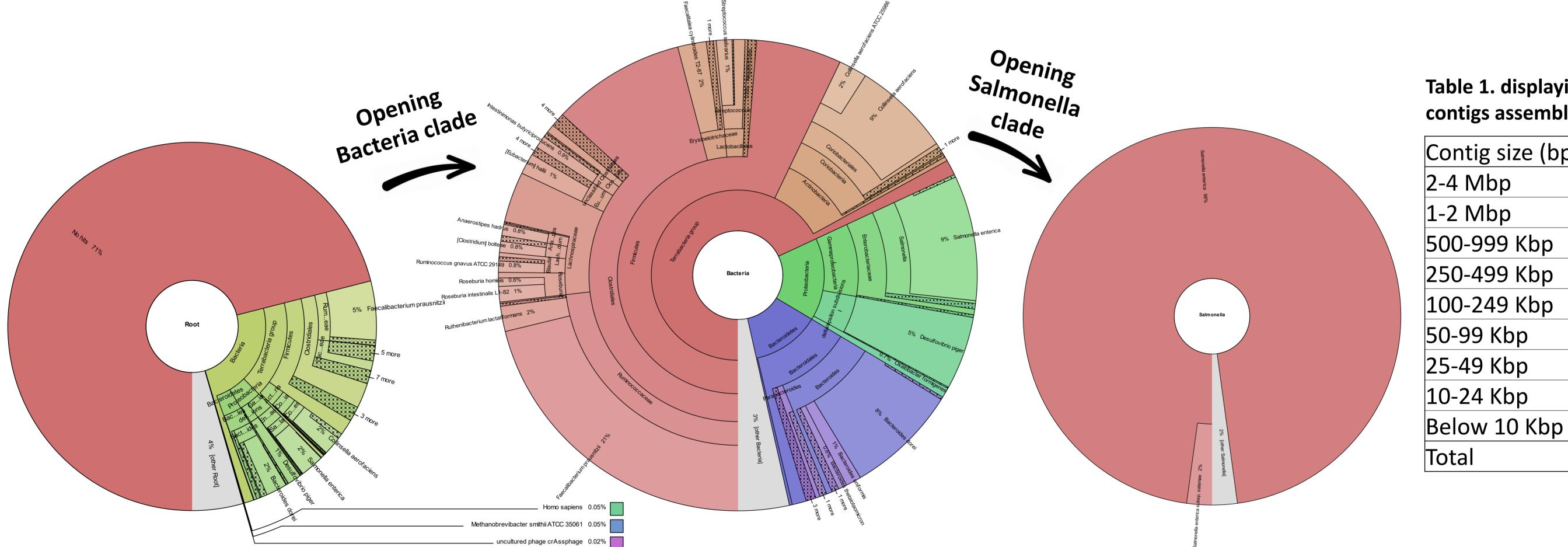


Table 1. displaying the number and size of
contigs assembled by FlyeContig size (bp)Contigs (n)2-4 Mbp61-2 Mbp15500-999 Kbp25250-499 Kbp74100-249 Kbp302

453

759

1103

1525

4262

Figure 2: Krona visualisation of a Kraken2 report generated using contigs assembled by Flye

Results: Comparing a pure culture isolate to a metagenome derived genome (MAG)

- From the same stool sample a single colony was isolated and sequenced with Nanopore and Illumina technologies to create a hybrid consensus sequence
- This pure culture isolate was used as a benchmark to compare the typing results from the metagenome data (Table 2 & 3)
- Metabat2 was used to bin the Flye assembled metagenome contigs. CheckM was used to identify the bin containing Salmonella reads

Table 2: Salmonella In Silico Typing Resource (SISTR) results			
	Pure Culture Isolate	Metagenome derived genome	
Subspecies	Salamae	Salamae	
Serovar	II 6,7:g,[m],s,t:[z42] II 6,7:m,t	II 6,7:g,[m],s,t:[z42] II 6,7:m,t	
Serogroup	C1	C1	
O-antigen	6,7	6,7	

Table 3: Resfinder results				
	Pure Culture Isolate	Metagenome derived genome		
AMR gene 1	aac(6')-laa_1	aac(6')-laa_1		
AMR gene 2	mdf(A)_1	mdf(A)_1		
Resistance profile	sensitive	sensitive		

Conclusions

- We are developing a method to isolate HMW DNA from stool utilising RevoluGen's automated Fire Monkey HMW DNA extraction kit
- Using long read metagenomic sequencing we were able to identify the subspecies, serovar, and AMR profile of the targeted pathogen in line with results from a pure culture
- Our pipeline is showing promising signs that high-throughput stool metagenomics could offer a data rich alternative to CIT-only testing strategies in the near future

	References	
	1.	Forbes, Jessica D., et al. "Metagenomics: the next culture-independent game changer." Frontiers in microbiology 8 (2017): 1069.
	2.	UK Standards for Microbiology Investigations: Gastroenteritis. (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/930517/S_7i2_FINAL-UKSMI.pdf)
Thank you for the travel grant	•	EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel), et al. "Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms." EFSA Journal 17.12 (2019): e05898.